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Abstract

The Dirichlet process and its extension, the Pitman-Yor process, are
stochastic processes that take probability distributions as a parameter. These
processes can be stacked up to form a hierarchical nonparametric Bayesian
model. In this article, we present efficient methods for the use of these pro-
cesses in this hierarchical context, and apply them to latent variable models
for text analytics. In particular, we propose a general framework for design-
ing these Bayesian models, which are called topic models in the computer
science community. We then propose a specific nonparametric Bayesian topic
model for modelling text from social media. We focus on tweets (posts on
Twitter) in this article due to their ease of access. We find that our non-
parametric model performs better than existing parametric models in both
goodness of fit and real world applications.

Keywords: Bayesian nonparametric methods, Markov chain Monte Carlo,
topic models, hierarchical Pitman-Yor processes

1. Introduction

We live in the information age. With the Internet, information can be
obtained easily and almost instantly. This has changed the dynamic of infor-
mation acquisition, for example, we can now (1) attain knowledge by visiting
digital libraries, (2) be aware of the world by reading news online, (3) seek

*Corresponding author
Email addresses: karwai.lim@anu.edu.au (Kar Wai Lim),
wray.buntine@monash.edu (Wray Buntine), cchangyou@gmail.com (Changyou Chen),
lan.du@monash.edu (Lan Du)

Preprint submitted to Int. J. Approzimate Reasoning June 15, 2016



10

15

20

25

30

35

40

45

opinions from social media, and (4) engage in political debates via web fo-
rums. As technology advances, more information is created, to a point where
it is infeasible for a person to digest all the available content. To illustrate,
in the context of a healthcare database (PubMed), the number of entries has
seen a growth rate of approximately 3,000 new entries per day in the ten-
year period from 2003 to 2013 (Suominen et al., 2014). This motivates the
use of machines to automatically organise, filter, summarise, and analyse the
available data for the users. To this end, researchers have developed various
methods, which can be broadly categorised into computer vision (Low, 1991;
Mai, 2010), speech recognition (Rabiner and Juang, 1993; Jelinek, 1997), and
natural language processing (NLP, Manning and Schiitze, 1999; Jurafsky and
Martin, 2000). This article focuses on text analysis within NLP.

In text analytics, researchers seek to accomplish various goals, including
sentiment analysis or opinion mining (Pang and Lee, 2008; Liu, 2012), in-
formation retrieval (Manning et al., 2008), text summarisation (Lloret and
Palomar, 2012), and topic modelling (Blei, 2012). To illustrate, sentiment
analysis can be used to extract digestible summaries or reviews on products
and services, which can be valuable to consumers. On the other hand, topic
models attempt to discover abstract topics that are present in a collection of
text documents.

Topic models were inspired by latent semantic indexing (LSI, Landauer
et al., 2007) and its probabilistic variant, probabilistic latent semantic indez-
ing (pLSI), also known as the probabilistic latent semantic analysis (pLSA,
Hofmann, 1999). Pioneered by Blei et al. (2003), latent Dirichlet allocation
(LDA) is a fully Bayesian extension of pLSI, and can be considered the sim-
plest Bayesian topic model. The LDA is then extended to many different
types of topic models. Some of them are designed for specific applications
(Wei and Croft, 2006; Mei et al., 2007), some of them model the structure
in the text (Blei and Lafferty, 2006; Du, 2012), while some incorporate extra
information in their modelling (Ramage et al., 2009; Jin et al., 2011).

On the other hand, due to the well known correspondence between the
Gamma-Poisson family of distributions and the Dirichlet-multinomial fam-
ily, Gamma-Poisson factor models (Canny, 2004) and their nonparametric
extensions, and other Poisson-based variants of non-negative matriz factori-
sation (NMF) form a methodological continuum with topic models. These
NMF methods are often applied to text, however, we do not consider these
methods here.

This article will concentrate on topic models that take into account ad-
ditional information. This information can be auziliary data (or metadata)
that accompany the text, such as keywords (or tags), dates, authors, and
sources; or external resources like word lexicons. For example, on Twitter, a
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popular social media platform, its messages, known as tweets, are often asso-
ciated with several metadata like location, time published, and the user who
has written the tweet. This information is often utilised, for instance, Kin-
sella et al. (2011) model tweets with location data, while Wang et al. (2011b)
use hashtags for sentiment classification on tweets. On the other hand, many
topic models have been designed to perform bibliographic analysis by using
auxiliary information. Most notable of these is the author-topic model (ATM,
Rosen-Zvi et al., 2004), which, as its name suggests, incorporates authorship
information. In addition to authorship, the Citation Author Topic model
(Tu et al., 2010) and the Author Cite Topic Model (Kataria et al., 2011)
make use of citations to model research publications. There are also topic
models that employ external resources to improve modelling. For instance,
He (2012) and Lim and Buntine (2014) incorporate a sentiment lexicon as
prior information for a weakly supervised sentiment analysis.

Independent to the use of auxiliary data, recent advances in nonparamet-
ric Bayesian methods have produced topic models that utilise nonparametric
Bayesian priors. The simplest examples replace Dirichlet distributions by the
Dirichlet process (DP, Ferguson, 1973). The simplest is hierarchical Dirich-
let process LDA (HDP-LDA) proposed by Teh et al. (2006) that replaces
just the document by topic matrix in LDA. One can further extend topic
models by using the Pitman-Yor process (PYP, Ishwaran and James, 2001)
that generalises the DP, by replacing the second Dirichlet distribution which
generates the topic by word matrix in LDA. This includes the work of Sato
and Nakagawa (2010), Du et al. (2012b), Lindsey et al. (2012), among oth-
ers. Like the HDP, the PYPs can be stacked to form hierarchical Pitman-Yor
processes (HPYP), which are used in more complex models. Another fully
nonparametric extension to topic modelling uses the Indian buffet process
(Archambeau et al., 2015) to sparsify both the document by topic matrix
and the topic by word matrix in LDA.

Advantages of employing nonparametric Bayesian methods with topic
models is the ability to estimate the topic and word priors and to infer the
number of clusters® from the data. Using the PYP also allows the modelling
of the power-law property exhibited by natural languages (Goldwater et al.,
2005). These touted advantages have been shown to yield significant im-
provements in performance (Buntine and Mishra, 2014). However, we note
the best known approach for learning with hierarchical Dirichlet (or Pitman-
Yor) processes is to use the Chinese restaurant franchise (Teh and Jordan,
2010). Because this requires dynamic memory allocation to implement the

I This is known as the number of topics in topic modelling.
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hierarchy, there has been extensive research in attempting to efficiently imple-
ment just the HDP-LDA extension to LDA mostly based around variational
methods (Teh et al., 2008; Wang et al., 2011a; Bryant and Sudderth, 2012;
Sato et al., 2012; Hoffman et al., 2013). Variational methods have rarely
been applied to more complex topic models, as we consider here, and unfor-
tunately Bayesian nonparametric methods are gaining a reputation of being
difficult to use. A newer collapsed and blocked Gibbs sampler (Chen et al.,
2011) has been shown to generally outperform the variational methods as
well as the original Chinese restaurant franchise in both computational time
and space and in some standard performance metrics (Buntine and Mishra,
2014). Moreover, the technique does appear suitable for more complex topic
models, as we consider here.

This article,? extending the algorithm of Chen et al. (2011), shows how
to develop fully nonparametric and relatively efficient Bayesian topic models
that incorporate auxiliary information, with a goal to produce more accurate
models that work well in tackling several applications. As a by-product, we
wish to encourage the use of state-of-the-art Bayesian techniques, and also
to incorporate auxiliary information, in modelling.

The remainder of this article is as follows. We first provide a brief back-
ground on the Pitman-Yor process in Section 2. Then, in Section 3, we detail
our modelling framework by illustrating it on a simple topic model. We con-
tinue through to the inference procedure on the topic model in Section 4.
Finally, in Section 5, we present an application on modelling social network
data, utilising the proposed framework. Section 6 concludes.

2. Background on Pitman-Yor Process

We provide a brief, informal review of the Pitman-Yor process (PYP, Ish-
waran and James, 2001) in this section. We assume the readers are familiar
with basic probability distributions (see Walck, 2007) and the Dirichlet pro-
cess (DP, Ferguson, 1973). In addition, we refer the readers to Hjort et al.
(2010) for a tutorial on Bayesian nonparametric modelling.

2.1. Pitman-Yor Process

The Pitman-Yor process (PYP, Ishwaran and James, 2001) is also known
as the two-parameter Poisson-Dirichlet process. The PYP is a two-parameter
generalisation of the DP, now with an extra parameter o named the dis-
count parameter in addition to the concentration parameter §. Similar to

2 We note that this article adapts and extends our previous work (Lim et al., 2013),
which is available online as an unpublished workshop paper.
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DP, a sample from a PYP corresponds to a discrete distribution (known as
the output distribution) with the same support as its base distribution H.
The underlying distribution of the PYP is the Poisson-Dirichlet distribution
(PDD), which was introduced by Pitman and Yor (1997).

The PDD is defined by its construction process. For 0 < a < 1 and
8 > —a, let V, be distributed independently as follows:

(Vi | @, B) ~ Beta(l — o, B + ka) for k=1,2,3, ..., (1)
and define (py,p2,ps, -..) as
b1 = ‘/1 ) (2)
k-1
kaVkH(l—Vi), for k> 2. (3)
i=1

If we let p = (p1, po, P3, - - - ) be a sorted version of (p1, p2, ps, . ..) in descend-
ing order, then p is Poisson-Dirichlet distributed with parameter a and f:

p ~ PDD(e, B). (4)

Note that the unsorted version (pi, pa, ps, ... ) follows a GEM(a, 8) distribu-
tion, which is named after Griffiths, Engen and McCloskey (Pitman, 2006).

With the PDD defined, we can then define the PYP formally. Let H be
a distribution over a measurable space (X,B), for 0 < a < 1 and 8 > —q,
suppose that p = (p1,p2, ps, ... ) follows a PDD (or GEM) with parameters
a and (3, then PYP is given by the formula

p($|aa6aH):Zpk5Xk(x)? fOTk:1,2,3,..., (5)
k=1

where Xj are independent samples drawn from the base measure H and
dx,(x) represents probability point mass concentrated at X (i.e., it is an
indicator function that is equal to 1 when z = X} and 0 otherwise):

my)—{ Life =y (©)

0 otherwise .

This construction, Equation (1), is named the stick-breaking process. The
PYP can also be constructed using an analogue to Chinese restaurant process
(which explicitly draws a sequence of samples from the base distribution). A
more extensive review on the PYP is given by Buntine and Hutter (2012).
A PYP is often more suitable than a DP in modelling since it exhibits a
power-law behaviour (when « # 0), which is observed in natural languages
(Goldwater et al., 2005; Teh and Jordan, 2010). The PYP has also been
employed in genomics (Favaro et al., 2009) and economics (Aoki, 2008). Note
that when the discount parameter « is 0, the PYP simply reduces to a DP.

5
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2.2. Pitman-Yor Process with a Mizture Base

Note that the base measure H of a PYP is not necessarily restricted to a
single probability distribution. H can also be a mixture distribution such as

H:lel+p2H2+"'+ann7 (7)

where " pi = 1 and {H,... H,} is a set of distributions over the same
measurable space (X, 5) as H.

With this specification of H, the PYP is also named the compound
Poisson-Dirichlet process in Du (2012), or the doubly hierarchical Pitman-Yor
process in Wood and Teh (2009). A special case of this is the DP equivalent,
which is also known as the DP with mixed random measures in Kim et al.
(2012). Note that we have assumed constant values for the p;, though of
course we can go fully Bayesian and assign a prior distribution for each of
them, a natural prior would be the Dirichlet distribution.

2.3. Remark on Bayesian Inference

Performing exact Bayesian inference on nonparametric models is often in-
tractable due to the difficulty in deriving the closed-form posterior distribu-
tions. This motivates the use of Markov chain Monte Carlo (MCMC) meth-
ods (see Gelman et al., 2013) for approximate inference. Most notable of the
MCMC methods are the Metropolis-Hastings (MH) algorithms (Metropolis
et al., 1953; Hastings, 1970) and Gibbs samplers (Geman and Geman, 1984).
These algorithms serve as a building block for more advanced samplers, such
as the MH algorithms with delayed rejection (Mira, 2001). Generalisations
of the MCMC method include the reversible jump MCMC (Green, 1995) and
its delayed rejection variant (Green and Mira, 2001) can also be employed
for Bayesian inference, however, they are out of the scope in this article.

Instead of sampling one parameter at a time, one can develop an algo-
rithm that updates more parameters in each iteration, a so-called blocked
Gibbs sampler (Liu, 1994). Also, in practice we are usually only interested
in a certain subset of the parameters; in such cases we can sometimes derive
more efficient collapsed Gibbs samplers (Liu, 1994) by integrating out the
nuisance parameters. In the remainder of this article, we will employ a com-
bination of the blocked and collapsed Gibbs samplers for Bayesian inference.

3. Modelling Framework with Hierarchical Pitman-Yor Process

In this section, we discuss the basic design of our nonparametric Bayesian
topic models using thierarchical Pitman-Yor processes (HPYP). In particu-
lar, we will introduce a simple topic model that will be extended later. We
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Figure 1: Graphical model of the HPYP topic model. It is an extension to LDA by allow-
ing the probability vectors to be modelled by PYPs instead of the Dirichlet distributions.
The area on the left of the graphical model (consists of 1, v and 0) is usually referred as
topic side, while the right hand side (with v and ¢) is called the vocabulary side. The
word node denoted by wy, is observed. The notations are defined in Table 1.

D K

discuss the general inference algorithm for the topic model and hyperparam-
eter optimisation.

Development of topic models is fundamentally motivated by their appli-
cations. Depending on the application, a specific topic model that is most
suitable for the task should be designed and used. However, despite the ease
of designing the model, the majority of time is spent on implementing, as-
sessing, and redesigning it. This calls for a better designing cycle/routine
that is more efficient, that is, spending less time in implementation and more
time in model design and development.

We can achieve this by a higher level implementation of the algorithms
for topic modelling. This has been made possible in other statistical domains
by BUGS (Bayesian inference using Gibbs sampling, Lunn et al., 2000) or
JAGS (just another Gibbs sampler, Plummer, 2003), albeit with standard
probability distributions. Theoretically, BUGS and JAGS will work on LDA;
however, in practice, running Gibbs sampling for LDA with BUGS and JAGS
is very slow. This is because their Gibbs samplers are uncollapsed and not
optimised. Furthermore, they cannot be used in a model with stochastic
processes, like the Gaussian process (GP) and DP.

Below, we present a framework that allows us to implement HPYP topic
models efficiently. This framework allows us to test variants of our proposed
topic models without significant reimplementation.

3.1. Hierarchical Pitman-Yor Process Topic Model

The HPYP topic model is a simple network of PYP nodes since all distri-
butions on the probability vectors are modelled by the PYP. For simplicity,
we assume a topic model with three PYP layers, although in practice there is
no limit to the number of PYP layers. We present the graphical model of our
generic topic model in Figure 1. This model is a variant of those presented

7
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in Buntine and Mishra (2014), and is presented here as a starting model for
illustrating our methods and for subsequent extensions.
At the root level, we have p and v distributed as PYPs:

pu~ PYP(at, p*, H"), (8)
§ ~ PYP(a7, 57, HY). 0

The variable p is the root node for the topics in a topic model while v is the
root node for the words. To allow arbitrary number of topics to be learned,
we let the base distribution for u, H*, to be a continuous distribution or a
discrete distribution with infinite samples.

We usually choose a discrete uniform distribution for v based on the word
vocabulary size of the text corpus. This decision is technical in nature, as
we are able to assign a tiny probability to words not observed in the training
set, which eases the evaluation process. Thus H? = {- -- -+ } where |V|
is the set of all word vocabulary of the text corpus.

We now consider the topic side of the HPYP topic model. Here we have
v, which is the child node of u. It follows a PYP given v, which acts as its
base distribution:

1
7|V|7

v ~PYP(a”, B" ). (10)

For each document d in a text corpus of size D, we have a document—topic
distribution 8, , which is a topic distribution specific to a document. Each of
them tells us about the topic composition of a document.

04 ~ PYP(a%, g% v), for d=1,...,D. (11)

While for the vocabulary side, for each topic k learned by the model, we
have a topic—word distribution ¢, which tells us about the words associated
with each topic. The topic-word distribution ¢, is PYP distributed given
the parent node ~, as follows:

b ~ PYP(a® 3% ~), for k=1,... K. (12)

Here, K is the number of topics in the topic model.

For every word wg, in a document d which is indexed by n (from 1 to
Ny, the number of words in document d), we have a latent topic zg, (also
known as topic assignment) which indicates the topic the word represents.
zan and wy, are categorical variables generated from 6, and ¢ respectively:

Zan | 0a ~ Discrete(6y) , (13)
Wan, | Zdn, @ ~ Discrete(¢,, ), for n=1,...,Ny. (14)
The above o and [ are the discount and concentration parameters of the

PYPs (see Section 2.1), note that they are called the hyperparameters in the
model. We present a list of variables used in this section in Table 1.



Table 1: List of variables for the HPYP topic model used in this section.

Variable Name Description
Zdn Topic Topical label for word wg,, .
Wi Word Observed word or phrase at position n in

document d.

Probability distribution in generating
words for topic k.

Probability distribution in generating top-
ics for document d.

I Global topic distribution Topic prior for v.
oV Discount Discount parameter for PYP N.
N Concentration Concentration parameter for PYP N.
HN Base distribution Base distribution for PYP V.
CI/C\/ Customer count Number of customers having dish k in

restaurant N

tﬁf Table count rant A,
777777777777 All topics R VCOVHe'ct'iorn Vofr aﬂ topics zdnr.r -
v Allwords Collection of all words wdﬁ S
. VE 777777 AVHV };yperparame‘;elrrsr - St(;lrlli;:.tion Vofr aﬂ hyperparainétéré éﬁd VC(V)nr—
. VC 777777 All crustomer cou'nt'sr . VC'orllerct'iorn Vofr aﬂ customersrcbu'ntrs c,;v .
o VT 7777777 AH table countrs 77777 Coilécfioﬁ Vofr aﬂ table counrtsr t{y 77777

a0 3.2. Model Representation and Posterior Likelihood
In a Bayesian setting, posterior inference requires us to analyse the poste-
rior distribution of the model variables given the observed data. For instance,
the joint posterior distribution for the HPYP topic model is

p(p,v,7,0,0,Z|W,E) . (15)

Here, we use bold face capital letters to represent the set of all relevant
variables. For instance, W captures all words in the corpus. Additionally,

we denote = as the set of all hyperparameters and constants in the model.
Note that deriving the posterior distribution analytically is almost impos-
215 sible due to its complex nature. This leaves us with approximate Bayesian
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inference techniques as mentioned in Section 2.3. However, even with these
techniques, performing posterior inference with the posterior distribution is
difficult due to the coupling of the probability vectors from the PYPs.

The key to an efficient inference procedure with the PYPs is to marginalise
out the PYPs in the model and record various associated counts instead,
which yields a collapsed sampler. To achieve this, we adopt a Chinese Restau-
rant Process (CRP) metaphor (Teh and Jordan, 2010; Blei et al., 2010) to
represent the variables in the topic model. With this metaphor, all data in
the model (e.g., topics and words) are the customers; while the PYP nodes
are the restaurants the customers visit. In each restaurant, each customer is
to be seated at only one table, though each table can have any number of cus-
tomers. Each table in a restaurant serves a dish, the dish corresponds to the
categorical label a data point may have (e.g., the topic label or word). Note
that there can be more than one table serving the same dish. In a HPYP
topic model, the tables in a restaurant N are treated as the customers for
the parent restaurant P (in the graphical model, P points to N'), and they
share the same dish. This means that the data is passed up recursively until
the root node. For illustration, we present a simple example in Figure 2,
showing the seating arrangement of the customers from two restaurants.

Naively recording the seating arrangement (table and dish) of each cus-
tomer brings about computational inefficiency during inference. Instead, we
adopt the table multiplicity (or table counts) representation of Chen et al.
(2011) which requires no dynamic memory, thus consuming only a factor
of memory at no loss of inference efficiency. Under this representation, we
store only the customer counts and table counts associated with each restau-
rant. The customer count ¢y denotes the number of customers who are
having dish k in restaurant A/. The corresponding symbol without sub-
script, ¢, denotes the collection of customer counts in restaurant N, that
is, N = (- ,C]/:[7 --+). The total number of customers in a restaurant A
is denoted by the capitalised symbol instead, C% = ok CkM . Similar to the
customer count, the table count tﬁf denotes the number of non-empty tables
serving dish & in restaurant A". The corresponding tV and TV are defined
similarly. For instance, from the example in Figure 2, we have ¢ = 9 and

sun
t2 = 3, the corresponding illustration of the table multiplicity representa-

tion is presented in Figure 3. We refer the readers to Chen et al. (2011) for
a detailed derivation of the posterior likelihood of a restaurant.

For the posterior likelihood of the HPYP topic model, we marginalise out
the probability vector associated with the PYPs and represent them with the
customer counts and table counts, following Chen et al. (2011, Theorem 1).
We present the modularised version of the full posterior of the HPYP topic

model, which allows the posterior to be computed very quickly. The full

10



Restaurant 1

Restaurant 2

Figure 2: An illustration of the Chinese restaurant process representation. The customers
are represented by the circles while the tables are represented by the rectangles. The dishes
are the symbols in the middle of the rectangles, here they are denoted by the sunny symbol
and the cloudy symbol. In this illustration, we know the number of customers corresponds
to each table, for example, the green table is occupied by three customers. Also, since
Restaurant 1 is the parent of Restaurant 2, the tables in Restaurant 2 are treated as the
customers for Restaurant 1.

posterior consists of the modularised likelihood associated with each PYP in
the model, defined as

N | N K -1
f(N):(ﬁ(ﬁlj\(fl%HSZgaN(ﬁf/) , for NNPYP(@N,BN,P).
ON k=1 k

(16)

Here, S, , are generalised Stirling numbers (Buntine and Hutter, 2012, The-
orem 17). Both (x)r and (z|y)r denote Pochhammer symbols with rising
factorials (Oldham et al., 2009, Section 18):

(@)r=z-(x+1)-(z+(T-1)) , (17)
(zly)r =2 (x+y)-- (z+(T—1)y). (18)

With the CRP representation, the full posterior of the HPYP topic model

11
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Restaurant 1

Restaurant 2

___________________________________________________________________

Figure 3: An illustration of the Chinese restaurant with the table counts representation.
Here the setting is the same as Figure 2 but the seating arrangement of the customers are
“forgotten” and only the table and customer counts are recorded. Thus, we only know
that there are three sunny tables in Restaurant 2, with a total of nine customers.

can now be written — in terms of f(-) given in Equation (16) — as

p(Z,T,C|W,E) x p(Z,W,T,C|E)

D K VI )
x F(0)f (V) (wad)) (wak))fm (H (1) )
=1 k=1 v=1 (19)

This result is a generalisation of Chen et al. (2011, Theorem 1) to account
for discrete base distribution — the last term in Equation (19) corresponds
to the base distribution of v, and v indexes each unique word in vocabulary
set V. The bold face T and C denote the collection of all table counts
and customer counts, respectively. Note that the topic assignments Z are
implicitly captured by the customer counts:

Ng
Czd = Z ](Zdn = k) ) (20)
n=1

where [(-) is the indicator function, which evaluates to 1 when the statement
inside the function is true, and 0 otherwise. We would like to point out
that even though the probability vectors of the PYPs are integrated out and
not explicitly stored, they can easily be reconstructed. This is discussed in
Section 4.4. We move on to Bayesian inference in the next section.

12
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4. Posterior Inference for the HPYP Topic Model

We focus on the MCMC method for Bayesian inference on the HPYP topic
model. The MCMC method on topic models follows these simple procedures
— decrementing counts contributed by a word, sample a new topic for the
word, and update the model by accepting or rejecting the proposed sample.
Here, we describe the collapsed blocked Gibbs sampler for the HPYP topic
model. Note the PYPs are marginalised out so we only deal with the counts.

4.1. Decrementing the Counts Associated with a Word

The first step in a Gibbs sampler is to remove a word and correspond-
ing latent topic, then decrement the associated customer counts and table
counts. To give an example from Figure 2, if we remove the red customer from
Restaurant 2, we would decrement the customer count ¢2 , by 1. Addition-

ally, we also decrement the table count t2 by 1 because the red customer is

the only customer on its table. This in turn decrements the customer count

ct by 1. However, this requires us to keep track of the customers’ seat-

sun
ing arrangement which leads to increased memory requirements and poorer
performance due to inadequate mixing (Chen et al., 2011).

To overcome the above issue, we follow the concept of table indicator
(Chen et al., 2011) and introduce a new auxiliary Bernoulli indicator vari-
able u}’, which indicates whether removing the customer also removes the
table by which the customer is seated. Note that our Bernoulli indicator
is different to that of Chen et al. (2011) which indicates the restaurant a
customer contributes to. The Bernoulli indicator is sampled as needed in the
decrementing procedure and it is not stored, this means that we simply “for-
get” the seating arrangements and re-sample them later when needed, thus
we do not need to store the seating arrangement. The Bernoulli indicator of
a restaurant N depends solely on the customer counts and the table counts:

N N
p(uN): ty /c{y if w =1 (1)
* Lt/ if ul =0 .

In the context of the HPYP topic model described in Section 3.1, we
formally present how we decrement the counts associated with the word wy,
and latent topic zg, from document d and position n. First, on the vocab-
ulary side (see Figure 1), we decrement the customer count cﬁdi" associated

Zdn

with ¢,, by 1. Then sample a Bernoulli indicator uf;dn according to Equa-

tion (21). If uff;ib = 1, we decrement the table count tﬁ,d‘i and also the
customer count ¢}, = by one. In this case, we would sample a Bernoulli indi-
cator wj, ~for v, and decrement ¢7, ~if uj, = 1. We do not decrement the

13
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Table 2: All possible proposals of the blocked Gibbs sampler for the variables associated
with wg, . To illustrate, one sample would be zg4, = 1, tﬁgn does not increment (stays
the same), and cgin increments by 1, for all N in {u,v, 04, d.,,,7}. We note that the
proposals can include states that are invalid, but this is not an issue since those states

have zero posterior probability and thus will not be sampled.

Variable Possibilities Variable Possibilities Variable Possibilities

Zdn {1,...,K} N Y o1y {N N 41}

Zdn Zdn' “Zdn Zdn Zdn' “Zdn

respective customer count if the Bernoulli indicator is 0. Second, we would
need to decrement the counts associated with the latent topic 24, . The pro-
cedure is similar, we decrement ngn by 1 and sample the Bernoulli indicator
uggn . Note that whenever we decrement a customer count, we sample the

corresponding Bernoulli indicator. We repeat this procedure recursively until
the Bernoulli indicator is 0 or until the procedure hits the root node.

4.2. Sampling a New Topic for a Word

After decrementing the variables associated with a word wg, , we use a
blocked Gibbs sampler to sample a new topic zg4, for the word and the corre-
sponding customer counts and table counts. The conditional posterior used
in sampling can be computed quickly when the full posterior is represented
in a modularised form. To illustrate, the conditional posterior for z4, and its
associated customer counts and table counts is

) o Z,T,C|W, E)
WT.Clz W, T o gy - PET W
Plan, T, G270 W T, O, 8) = i G (W 5)

, (22)

which is further broken down by substituting the posterior likelihood defined
in Equation (19), giving the following ratios of the modularised likelihoods:

)7dn

F0)  JW) fB0) f(6s,) S() [ 1) G
FeeT T 70, Feeky 7w () -

The superscript (0~ indicates that the variables associated with the word
wg, are removed from the respective sets, that is, the customer counts and
table counts are after the decrementing procedure. Since we are only sample
the topic assignment zy, associated with one word, the customer counts and
table counts can only increment by at most 1, see Table 2 for a list of all
possible proposals.
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This allows the ratios of the modularised likelihoods, which consists of
ratios of Pochhammer symbol and ratio of Stirling numbers

o
FN) (B ewyan (B¥aM)pw T O v

F=E) = T Box (BTN gy i g0

—d
(t-]/gv) ‘fl7a/\[

(24)

to simplify further. For instance, the ratios of Pochhammer symbols can be
reduced to constants, as follows:

(7)741
(z)r

(z|y) 1

=x+7T,
(z|y)r

=z +yT. (25)

The ratio of Stirling numbers, such as Si’iia /S¥ ., , can be computed quickly
via caching (Buntine and Hutter, 2012). Technical details on implementing
the Stirling numbers cache can be found in Lim (2016).

With the conditional posterior defined, we proceed to the sampling pro-
cess. Our first step involves finding all possible changes to the topic zy, ,
customer counts, and the table counts (hereafter known as ‘state’) associ-
ated with adding the removed word wy, back into the topic model. Since
only one word is added into the model, the customer counts and the table
counts can only increase by at most 1, constraining the possible states to
a reasonably small number. Furthermore, the customer counts of a parent
node will only be incremented when the table counts of its child node in-
creases. Note that it is possible for the added customer to generate a new
dish (topic) for the model. This requires the customer to increment the table
count of a new dish in the root node p by 1 (from 0).

Next, we compute the conditional posterior (Equation (22)) for all possi-
ble states. The conditional posterior (up to a proportional constant) can be
computed quickly by breaking down the posterior and calculating the rele-
vant parts. We then normalise them to sample one of the states to be the
proposed next state. Note that the proposed state will always be accepted,
which is an artifact of Gibbs sampler.

Finally, given the proposal, we update the HPYP model by incrementing
the relevant customer counts and table counts.

4.3. Optimising the Hyperparameters

Choosing the right hyperparameters for the priors is important for topic
models. Wallach et al. (2009a) show that an optimised hyperparameter in-
creases the robustness of the topic models and improves their model fitting.
The hyperparameters of the HPYP topic models are the discount parameters
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Algorithm 1 Collapsed Gibbs Sampler for the HPYP Topic Model

1. Initialise the HPYP topic model by assigning random topic to the latent
topic zg, associated to each word wg, . Then update all the relevant cus-
tomer counts C and table counts T by using Equation (20) and setting the
table counts to be about half of the customer counts.

2. For each word wyg, in each document d, do the following;:

(a) Decrement the counts associated with wy, (see Section 4.1).

(b) Block sample a new topic for z4, and corresponding customer counts C
and table counts T (see Section 4.2).

(c) Update (increment counts) the topic model based on the sample.

3. Update the hyperparameter SV for each PYP nodes A/ (see Section 4.3).

4. Repeat Steps 2—3 until the model converges or when a fix number of itera-
tions is reached.

and concentration parameters of the PYPs. Here, we propose a procedure
to optimise the concentration parameters, but leave the discount parameters
fixed due to their coupling with the Stirling numbers cache.

The concentration parameters 5 of all the PYPs are optimised using
an auxiliary variable sampler similar to Teh (2006). Being Bayesian, we
assume the concentration parameter 3V of a PYP node A has the following
hyperprior:

BN ~ Gamma(ro, 1), for N~ PYP (OéN, ol P), (26)

where 7y is the shape parameter and 7, is the rate parameter. The gamma
prior is chosen due to its conjugacy which gives a gamma posterior for V.

To optimise 3V, we first sample the auxiliary variables w and ¢; given the
current value of oV and gV, as follows:

w| BN ~ Beta(C’N7 BN) , (27)

: BN :
Q\aN,BNNBernoulh<m , for i=0,1,..., TV —1 . (28)

With these, we can then sample a new 8V from its conditional posterior
™ -1
ﬁN’w,CN Gamma | 79 + Z G, m—log(l—w)| . (29)

=0

The collapsed Gibbs sampler is summarised by Algorithm 1.
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4.4. Estimating the Probability Vectors of the PYPs

Recall that the aim of topic modelling is to analyse the posterior of
the model parameters, such as one in Equation (15). Although we have
marginalised out the PYPs in the above Gibbs sampler, the PYPs can be
reconstructed from the associated customer counts and table counts. Recov-
ering the full posterior distribution of the PYPs is a complicated task. So,
instead, we will analyse the PYPs via the expected value of their conditional
marginal posterior distribution, or simply, their posterior mean,

EN|Z,W,T,C,E], for N € {p,v,7,04, ¢} . (30)

The posterior mean of a PYP corresponds to the probability of sampling a
new customer for the PYP. To illustrate, we consider the posterior of the topic
distribution ;. We let Zg, to be a unknown future latent topic in addition
to the known Z. With this, we can write the posterior mean of 64 as

E[0a |Z,W,T,C,E] = E[p(Z4, = k|04,Z, W, T,C,E) | Z,W, T, C, E]
=E[p(Z4n = k|2, T,C)|Z, W, T,C, 5] (31)

by replacing 64 with the posterior predictive distribution of Z, and note
that Zg, can be sampled using the CRP, as follows:

(OéedTGd + /Bgd)yk _|_ CZd _ Oéng]fd

p(gdn:k‘zaTac): 69d+09d

(32)

Thus, the posterior mean of 6, is given as

(aPaT% 4 B°)E[vy | Z, W, T, C, E] + i* — alaT}
ﬁ(?d + (% ’
(33)

El0u |Z, W, T, C,E| =

which is written in term of the posterior mean of its parent PYP, v. The
posterior means of the other PYPs such as v can be derived by taking a
similar approach. Generally, the posterior mean corresponds to a PYP N
(with parent PYP P) is as follows:

(NTN + BE[P | Z, W, T,C,E] + ¢ — aNTYN
pN + N ’
(34)

E[Ny|Z, W, T,C,E] =

By applying Equation (34) recursively, we obtain the posterior mean for all
the PYPs in the model.

17



335

340

345

350

355

We note that the dimension of the topic distributions (p, v, 6) is K + 1,
where K is the number of observed topics. This accounts for the generation
of a new topic associated with the new customer, though the probability
of generating a new topic is usually much smaller. In practice, we may
instead ignore the extra dimension during the evaluation of a topic model
since it does not provide useful interpretation. One way to do this is to simply
discard the extra dimension of all the probability vectors after computing the
posterior mean. Another approach would be to normalise the posterior mean
of the root node p after discarding the extra dimension, before computing the
posterior mean of others PYPs. Note that for a considerably large corpus,
the difference in the above approaches would be too small to notice.

4.5. FEvaluations on Topic Models

Generally, there are two ways to evaluate a topic model. The first is to
evaluate the topic model based on the task it performs, for instance, the abil-
ity to make predictions. The second approach is the statistical evaluation of
the topic model on modelling the data, which is also known as the goodness-
of-fit test. In this section, we will present some commonly used evaluation
metrics that are applicable to all topic models, but we first discuss the pro-
cedure for estimating variables associated with the test set.

4.5.1. Predictive Inference on the Test Documents

Test documents, which are used for evaluations, are set aside from learn-
ing documents. As such, the document—topic distributions # associated with
the test documents are unknown and hence need to be estimated. One esti-
mate for @ is its posterior mean given the variables learned from the Gibbs
sampler:

0,=TF[0,|Z,W,T,C, =], (35)

obtainable by applying Equation (34). Note that since the latent topics
v/ corresponding to the test set are not sampled, the customer counts and
table counts associated with 6, are 0, thus 6y is equal to 7, the posterior
mean of v. However, this is not a good estimate for the topic distribution
of the test documents since they will be identical for all the test documents.
To overcome this issue, we will instead use some of the words in the test
documents to obtain a better estimate for #. This method is known as
document completion (Wallach et al., 2009b), as we use part of the text to
estimate #, and use the rest for evaluation.

Getting a better estimate for € requires us to first sample some of the
latent topics Z4, in the test documents. The proper way to do this is by
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running an algorithm akin to the collapsed Gibbs sampler, but this would
be excruciatingly slow due to the need to re-sample the customer counts and
table counts for all the parent PYPs. Instead, we assume that the variables
learned from the Gibbs sampler are fixed and sample the Z4, from their
conditional posterior sequentially, given the previous latent topics:

P(Zan = k| Wan, 04, @, Za1,s - - -, Zan—1) X Odk Oy, - (36)

Whenever a latent topic Zg, is sampled, we increment the customer count cgjn
for the test document. For simplicity, we set the table count tgjn to be half

the corresponding customer counts cgjn, this avoids the expensive operation
of sampling the table counts. Additionally, 8, is re-estimated using Equa-
tion (35) before sampling the next latent topic. We note that the estimated
variables are unbiased.

The final #; becomes an estimate for the topic distribution of the test
document d. The above procedure is repeated R times to give R samples of
0((;), which are used to compute the following Monte Carlo estimate of 6,:

. 1 ,
edzﬁzw. (37)

This Monte Carlo estimate can then be used for computing the evaluation
metrics. Note that when estimating 6, we have ignored the possibility of
generating a new topic, that is, the latent topics Z are constrained to the
existing topics, as previously discussed in Section 4.4.

4.5.2. Goodness-of-fit Test

Measures of goodness-of-fit usually involves computing the discrepancy
of the observed values and the predicted values under the model. However,
the observed variables in a topic model are the words in the corpus, which
are not quantifiable since they are discrete labels. Thus evaluations on topic
models are usually based on the model likelihoods instead.

A popular metric commonly used to evaluate the goodness-of-fit of a
topic model is perplexity, which is negatively related to the likelihood of the
observed words W given the model, this is defined as

(_ i £ logp(wan | ed,¢>> )
Zd:l Na

where p(wgy, |04, ®) is the likelihood of sampling the word wg, given the
document—topic distribution 6; and the topic—word distributions ¢. Com-

perplexity(W |6, ¢) = exp
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puting p(wan | 04, @) requires us to marginalise out zg, from their joint distri-
bution, as follows:

k
e Zp(wdn | Zdn = k’(bk) p(’zdn — k | ed)
k

= Z Olwgy, Ok - (39)
A

Although perplexity can be computed on the whole corpus, in practice
we compute the perplexity on test documents. This is to measure if the topic
model generalises well to unseen data. A good topic model would be able to
predict the words in the test set better, thereby assigning a higher probability

10 P(Wan |04, @) in generating the words. Since perplexity is negatively related
to the likelihood, a lower perplexity is better.

4.5.3. Document Clustering

We can also evaluate the clustering ability of the topic models. Note
that topic models assign a topic to each word in a document, essentially per-
forming a soft clustering (Erosheva and Fienberg, 2005) for the documents
in which the membership is given by the document—topic distribution 6. To
evaluate the clustering of the documents, we convert the soft clustering to
hard clustering by choosing a topic that best represents the documents, here-
after called the dominant topic. The dominant topic of a document d corre-
sponds to the topic that has the highest proportion in the topic distribution,
that is,

Dominant Topic(fy) = arg max 6y, . (40)
k

Two commonly used evaluation measures for clustering are purity and
normalised mutual information (NMI, Manning et al., 2008). The purity is
a simple clustering measure which can be interpreted as the proportion of
documents correctly clustered, while NMI is an information theoretic mea-
sures used for clustering comparison. If we denote the ground truth classes
as S = {s1,...,s;} and the obtained clusters as R = {ry,...,rx}, where
each s; and ry represents a collection (set) of documents, then the purity and
NMI can be computed as

2 MI(S; R)

ES) +ER)

K
1
purity(S,R) = ) ijax e N s;|, NMI(S,R) =
k=1
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where MI(S;R) denotes the mutual information between two sets and E(-)
denotes the entropy. They are defined as follows:

KJyrmsy |rms\ 5l 7]
Lk 1Tk (1851 k j o k k
=3 5 . E(R)=-) 5 logy -

k=1 j5=1

Note that the higher the purity or NMI, the better the clustering.

5. Application: Modelling Social Network on Twitter

This section looks at how we can employ the framework discussed above
for an application of tweet modelling, using auxiliary information that is
available on Twitter. We propose the Twitter-Network topic model (TNTM)
to jointly model the text and the social network in a fully Bayesian non-
parametric way, in particular, by incorporating the authors, hashtags, the
“follower” network, and the text content in modelling. The TNTM employs
a HPYP for text modelling and a Gaussian process (GP) random function
model for social network modelling. We show that the TNTM significantly
outperforms several existing nonparametric models due to its flexibility.

5.1. Motivation

Emergence of web services such as blogs, microblogs and social networking
websites allows people to contribute information freely and publicly. This
user-generated information is generally more personal, informal, and often
contains personal opinions. In aggregate, it can be useful for reputation
analysis of entities and products (Aula, 2010), natural disaster detection
(Karimi et al., 2013), obtaining first-hand news (Broersma and Graham,
2012), or even demographic analysis (Correa et al., 2010). We focus on
Twitter, an accessible source of information that allows users to freely voice
their opinions and thoughts in short text known as tweets.

Although LDA (Blei et al., 2003) is a popular model for text modelling,
a direct application on tweets often yields poor result as tweets are short
and often noisy (Zhao et al., 2011; Baldwin et al., 2013), that is, tweets are
unstructured and often contain grammatical and spelling errors, as well as
informal words such as user-defined abbreviations due to the 140 charac-
ters limit. LDA fails on short tweets since it is heavily dependent on word
co-occurrence. Also notable is that the text in tweets may contain special
tokens known as hashtags; they are used as keywords and allow users to link
their tweets with other tweets tagged with the same hashtag. Nevertheless,
hashtags are informal since they have no standards. Hashtags can be used
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as both inline words or categorical labels. When used as labels, hashtags are
often noisy, since users can create new hashtags easily and use any existing
hashtags in any way they like.®> Hence instead of being hard labels, hashtags
are best treated as special words which can be the themes of the tweets.
These properties of tweets make them challenging for topic models, and ad
hoc alternatives are used instead. For instance, Maynard et al. (2012) advo-
cate the use of shallow method for tweets, and Mehrotra et al. (2013) utilise
a tweet-pooling approach to group short tweets into a larger document. In
other text analysis applications, tweets are often ‘cleansed’ by NLP methods
such as lexical normalisation (Baldwin et al., 2013). However, the use of nor-
malisation is also criticised (Eisenstein, 2013), as normalisation can change
the meaning of text.

In the following, we propose a novel method for better modelling of mi-
croblogs by leveraging the auxiliary information that accompanies tweets.
This information, complementing word co-occurrence, also opens the door
to more applications, such as user recommendation and hashtag suggestion.
Our major contributions include (1) a fully Bayesian nonparametric model
named the Twitter-Network topic model (TNTM) that models tweets well,
and (2) a combination of both the HPYP and the GP to jointly model text,
hashtags, authors and the followers network. Despite the seeming complexity
of the TNTM model, its implementation is made relatively straightforward
using the flexible framework developed in Section 3. Indeed, a number of
other variants were rapidly implemented with this framework as well.

5.2. The Twitter-Network Topic Model

The TNTM makes use of the accompanying hashtags, authors, and fol-
lowers network to model tweets better. The TNTM is composed of two main
components: a HPYP topic model for the text and hashtags, and a GP based
random function network model for the followers network. The authorship
information serves to connect the two together. The HPYP topic model is
illustrated by region (®) in Figure 4 while the network model is captured by

region (@.

5.2.1. HPYP Topic Model
The HPYP topic model described in Section 3 is extended as follows. For
the word distributions, we first generate a parent word distribution prior

3 For example, hashtag hijacking, where a well defined hashtag is used in an “inappro-
priate” way. The most notable example would be on the hashtag #McDStories, though it
was initially created to promote happy stories on McDonald’s, the hashtag was hijacked
with negative stories on McDonald’s.
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Figure 4:  Graphical model for the Twitter-Network Topic Model (TNTM) composed
of a HPYP topic model (region (®) and a GP based random function network model
(region @). The author—topic distributions v serve to link the two together. Each tweet
is modelled with a hierarchy of document—topic distributions denoted by n, €', and 6,
where each is attuned to the whole tweet, the hashtags, and the words, in that order.
With their own topic assignments 2z’ and z, the hashtags y and the words w are separately
modelled. They are generated from the topic—hashtag distributions v’ and the topic—word
distributions v respectively. The variables g, ¢1 and -y are priors for the respective PYPs.
The connections between the authors are denoted by x, modelled by random function F.

for all topics:
v~ PYP(a",87,H"), (43)

where H, is a discrete uniform distribution over the complete word vocabu-
lary V.* Then, we sample the hashtag distribution 1}, and word distribution
Yy, for each topic k, with v as the base distribution:

Uy |y ~ PYP(a%, 8%, ), (44)
U |y ~ PYP(a¥*, BY ), for k=1,..., K. (45)

Note that the tokens of the hashtags are shared with the words, that is,
the hashtag #happy shares the same token as the word happy, and are thus

4 The complete word vocabulary contains words and hashtags seen in the corpus.

23



450

treated as the same word. This treatment is important since some hashtags
are used as words instead of labels.® Additionally, this also allows any words
to be hashtags, which will be useful for hashtag recommendation.

For the topic distributions, we generate a global topic distribution g,
which serves as a prior, from a GEM distribution. Then generate the author—
topic distribution v; for each author 7, and a miscellaneous topic distribution
11 to capture topics that deviate from the authors’ usual topics:

po ~ GEM(at0, gHo) | (46)
pia | po ~ PYP (™, B, i) , (47)
vi | o ~ PYP(a", 57, 1) , for 1=1,...,A. (48)

For each tweet d, given the author—topic distribution v and the observed
author a4, we sample the document—topic distribution 7, , as follows:

Na|aq, v ~PYP(a", " v,,), for d=1,...,D. (49)

Next, we generate the topic distributions for the observed hashtags (/) and
the observed words (6;), following the technique used in the adaptive topic
model (Du et al., 2012a). We explicitly model the influence of hashtags to
words, by generating the words conditioned on the hashtags. The intuition
comes from hashtags being the themes of a tweet, and they drive the content
of the tweet. Specifically, we sample the mixing proportions p%, which con-
trol the contribution of 7y and j; for the base distribution of ), and then
generate 0/, given pla:

i~ Beta(Aﬁé, A?) : (50)
0| 1, ma ~ PYP (oz%, B, plapy + (I_P%)??d> : (51)

We set 0/, and 7, as the parent distributions of 6;. This flexible configuration
allows us to investigate the relationship between 6;, 0, and n,, that is, we
can examine if 6, is directly determined by 74, or through the #/,. The mixing
proportions p% and the topic distribution 6, is generated similarly:

Pt~ Beta()\gd, )\?d) ) (52)

0a |4, 0 ~ PYP (0%, %, Py, + (1= )04 ) (53)

5 For instance, as illustrated by the following tweet: i want to get into #photography.
can someone recommend a good beginner #camera please? i dont know where to start
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The hashtags and words are then generated in a similar fashion to LDA. For
the m-th hashtag in tweet d, we sample a topic 2, and the hashtag ygm, by

Zm | 0 ~ Discrete(6)) (54)
Ydm | Zim, ' ~ Discrete (@D’Z& > , for m=1,..., My, (55)

where M, is the number of seen hashtags in tweet d. While for the n-th word
in tweet d, we sample a topic zg, and the word wg, by

Zan | B4 ~ Discrete(y) , (56)
Wan | Zdn, 0 ~ Discrete(¢zdn) , for n=1,..., Ny, (57)

where Ny is the number of observed words in tweet d. We note that all above
a, f and A are the hyperparameters of the model. We show the importance
of the above modelling with ablation studies in Section 5.6. Although the
HPYP topic model may seem complex, it is a simple network of PYP nodes
since all distributions on the probability vectors are modelled by the PYP.

5.2.2. Random Function Network Model

The network modelling is connected to the HPYP topic model via the
author—topic distributions v, where we treat v as inputs to the GP in the
network model. The GP, represented by F, determines the link between two
authors (x;;), which indicates the existence of the social links between author
1 and author j. For each pair of authors, we sample their connections with
the following random function network model:

Qij| v ~ F(vi,vj), (58)
zij | Qi ~ Bernoulli(s(Qy;)), for i=1,...,4; j=1,...,A, (59)

where s(-) is the sigmoid function:

s(t)

By marginalising out F, we can write Q ~ GP(s, k), where Q is a vectorised
collection of @;;.% ¢ denotes the mean vector and « is the covariance matrix
of the GP:

gij == Sim(yi, Vj) s (61)

1

= . 60
1+et (60)

2 Sim(v;, v;) — Sim(vy, vy ?
Kij,irj! = %GXP<_ — 202 e ) +0I(ij =15, (62)

5Q=(Q11,Q12,...,Q44)7, note that ¢ and & follow the same indexing.
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where s, [ and o are the hyperparameters associated to the kernel. Sim(-,-)
is a similarity function that has a range between 0 and 1, here chosen to be
cosine similarity due to its ease of computation and popularity.

5.2.3. Relationships with Other Models

The TNTM is related to many existing models after removing certain
components of the model. When hashtags and the network components are
removed, the TNTM is reduced to a nonparametric variant of the author
topic model (ATM). Oppositely, if authorship information is discarded, the
TNTM resembles the correspondence LDA (Blei and Jordan, 2003), although
it differs in that it allows hashtags and words to be generated from a common
vocabulary.

In contrast to existing parametric models, the network model in the
TNTM provides possibly the most flexible way of network modelling via a
nonparametric Bayesian prior (GP), following Lloyd et al. (2012). Different
to Lloyd et al. (2012), we propose a new kernel function that fits our purpose
better and achieves significant improvement over the original kernel.

5.3. Representation and Model Likelihood

As with previous sections, we represent the TNTM using the CRP repre-
sentation discussed in Section 3.2. However, since the PYP variables in the
TNTM can have multiple parents, we extend the representation following Du
et al. (2012a). The distinction is that we store multiple tables counts for each
PYP, to illustrate, t@f —~P represents the number of tables in PYP N serving
dish k that are contributed to the customer counts in PYP P, ¢/ . Similarly,
the total table counts that contribute to P is denoted as TV=7 =Y, tN=7.
Note the number of tables in PYP N is # = S, #¥~7, while the total
number of tables is TV = Y, TN=P. We refer the readers to Lim et al.
(2013, Appendix B) for a detailed discussion.

We use bold face capital letters to denote the set of all relevant lower
case variables, for example, we denote W° = {W, Y} as the set of all words
and hashtags; Z° = {Z,Z'} as the set of all topic assignments for the words
and the hashtags; T as the set of all table counts and C as the set of all
customer counts; and we introduce E as the set of all hyperparameters. By
marginalising out the latent variables, we write down the model likelihood
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corresponding to the HPYP topic model in terms of the counts:

p(Z°, T,C|W° E) x p(Z°, W°, T,C|E)

o< f (o) f () (H f(Vi)) < I1 f(%)f(m)) f()

D v £l
x (Hf(mz)f(@&)f(@d)g(p%)g(pﬁ)) 11 (ﬁ) ,
R BT

where f(N) is the modularised likelihood corresponding to node N, as de-
fined by Equation (16), and g(p) is the likelihood corresponding to the prob-
ability p that controls which parent node to send a customer to, defined as

g(p) = B(XY + V2P0 Y TV (64)
for N~ PYP (N, BV, pNPy + (1—p")P1). Note that B(a,b) denotes the
Beta function that normalises a Dirichlet distribution, defined as follows:

['(a) T'(b)

Bla,b) = I'(a+0b)

(65)

For the random function network model, the conditional posterior can be
derived as

P(QIX,1,E) x p(X,Q )

A A o
o (HHS(QUV“ (1 - S(Qij)) J)

i=1 j=1

1]

v

Y

<t e~ 3@-9TR1@-9). (00

The full posterior likelihood is thus the product of the topic model posterior
(Equation (63)) and the network posterior (Equation (66)):

p(Q.Z2°, T,C|X, W*° E) =p(Z°, T,C|W* E)p(Q[X,1,E).  (67)

5.4. Performing Posterior Inference on the TNTM

In the TNTM, combining a GP with a HPYP makes its posterior infer-
ence non-trivial. Hence, we employ approximate inference by alternatively
performing MCMC sampling on the HPYP topic model and the network
model, conditioned on each other. For the HPYP topic model, we employ
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the flexible framework discussed in Section 3 to perform collapsed blocked
Gibbs sampling. For the network model, we derive a Metropolis-Hastings
(MH) algorithm based on the elliptical slice sampler (Murray et al., 2010).
In addition, the author-topic distributions v connecting the HPYP and the
GP are sampled with an MH scheme since their posteriors do not follow a
standard form. We note that the PYPs in this section can have multiple
parents, so we extend the framework in Section 3 to allow for this.

The collapsed Gibbs sampling for the HPYP topic model in TNTM is
similar to the procedure in Section 4, although there are two main differences.
The first difference is that we need to sample the topics for both words
and hashtags, each with a different conditional posterior compared to that
of Section 4. While the second is due to the PYPs in TNTM can have
multiple parents, thus an alternative to decrementing the counts is required.
A detailed discussion on performing posterior inference and hyperparameter
sampling is presented in the supplementary material.”

5.5. Twitter Data

For evaluation of the TNTM, we construct a tweet corpus from the Twit-
ter 7 dataset (Yang and Leskovec, 2011),® This corpus is queried using the
hashtags #sport, #music, #finance, #politics, #science and #tech, chosen
for diversity. We remove the non-English tweets with langid.py (Lui and
Baldwin, 2012). We obtain the data on the followers network from Kwak
et al. (2010).” However, note that this followers network data is not com-
plete and does not contain information for all authors. Thus we filter out
the authors that are not part of the followers network data from the tweet
corpus. Additionally, we also remove authors who have written less than fifty
tweets from the corpus. We name this corpus T6 since it is queried with six
hashtags. It is consists of 240,517 tweets with 150 authors after filtering.

Besides the T6 corpus, we also use the tweet datasets described in Mehro-
tra et al. (2013). The datasets contains three corpora, each of them is queried
with exactly ten query terms. The first corpus, named the Generic Dataset,
are queried with generic terms. The second is named the Specific Dataset,
which is composed of tweets on specific named entities. Lastly, the Events
Dataset is associated with certain events. The datasets are mainly used
for comparing the performance of the TNTM against the tweet pooling tech-
niques in Mehrotra et al. (2013). We present a summary of the tweet corpora
in Table 3.

7 Available on the first author’s website.
8 http://snap.stanford.edu/data/twitter7.html
9 http://an.kaist.ac.kr/traces/WWW2010.html
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Table 3: Summary of the datasets used in this section, showing the number of tweets (D),
authors (A), unique word tokens (|V|), and the average number of words and hashtags in
each tweet. The T6 dataset is queried with six different hashtags and thus has a higher
number of hashtags per tweet. We note that there is a typo on the number of tweets for
the Events Dataset in Mehrotra et al. (2013), the correct number is 107,128.

Dataset Tweets Authors Vocabulary Words/Tweet Hashtags/Tweet

T6 240517 150 5343 6.35 1.34
Generic 359478 213488 14581 6.84 0.10
Specific 214580 116 685 15751 6.31 0.25
Events 107128 67 388 12765 5.84 0.17

5.6. Fxperiments and Results

We consider several tasks to evaluate the TNTM. The first task involves
comparing the TNTM with existing baselines on performing topic modelling
on tweets. We also compare the TNTM with the random function network
model on modelling the followers network. Next, we evaluate the TNTM with
ablation studies, in which we perform comparison with the TNTM itself but
with each component taken away. Additionally, we evaluate the clustering
performance of the TNTM, we compare the TNTM against the state-of-the-
art tweets-pooling LDA method in Mehrotra et al. (2013).

5.6.1. Experiment Settings

In all the following experiments, we vary the discount parameters « for
the topic distributions po, p1, Vi, M, 05, , and 6, , we set a to 0.7 for the
word distributions 1, ¢ and v to induce power-law behaviour (Goldwater
et al., 2011). We initialise the concentration parameters S to 0.5, noting
that they are learned automatically during inference, we set their hyperprior
to Gamma(0.1,0.1) for a vague prior. We fix the hyperparameters A, s, [
and o to 1, as we find that their values have no significant impact on the
model performance.!”

In the following evaluations, we run the full inference algorithm for 2,000
iterations for the models to converge. We note that the MH algorithm only
starts after 1,000 iterations. We repeat each experiment five times to reduce

the estimation error for the evaluations.

5.6.2. Goodness-of-fit Test
We compare the TNTM with the HDP-LDA and a nonparametric author-
topic model (ATM) on fitting the text data (words and hashtags). Their per-

10 We vary these hyperparameters over the range of 0.01 to 10 during testing.
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Table 4: Test perplexity and network log likelihood comparisons between the HDP-LDA,
the nonparametric ATM, the random function network model and the TNTM. Lower
perplexity indicates better model fitting. The TNTM significantly outperforms the other
models in term of model fitting.

Model Test Perplexity Network Log Likelihood

HDP-LDA  840.03 +15.7 N/A

Nonparametric ATM ~ 664.25 +17.76 N/A
Random Function N/A —557.86 +11.2
TNTM 505.01+7.8 —500.63 +13.6

formances are measured using perplexity on the test set (see Section 4.5.2).
The perplexity for the TNTM, accounting for both words and hashtags, is

1 WO 7 ? 9 !
Perplexity(W?) = exp| — o8 5 v, 1,4, ) : (68)
Zd:l Nq + Mgy
where the likelihood p(W° | v, iy, 0, ) is broken into
D My Ngq
p(WO | v, p1, w7 ’l/}/) = H H p(ydm | v, ft1, w/) Hp(wdn ’ Yd, V, B, ¢) : (69)
d=1m=1 n=1

We also compare the TNTM against the original random function network
model in terms of the log likelihood of the network data, given by log p(X | v).
We present the comparison of the perplexity and the network log likelihood
in Table 4. We note that for the network log likelihood, the less negative the
better. From the result, we can see that the TNTM achieves a much lower
perplexity compared to the HDP-LDA and the nonparametric ATM. Also,
the nonparametric ATM is significantly better than the HDP-LDA. This
clearly shows that using more auxiliary information gives a better model
fitting. Additionally, we can also see that jointly modelling the text and
network data leads to a better modelling on the followers network.

5.6.3. Ablation Test

Next, we perform an extensive ablation study with the TNTM. The com-
ponents that are tested in this study are (1) authorship, (2) hashtags, (3)
PYP py, (4) connection between PYP ¢, and 6, and (5) power-law be-
haviour on the PYPs. We compare the full TNTM against variations in
which each component is ablated. Table 5 presents the test set perplexity
and the network log likelihood of these models, it shows significant improve-
ments of the TNTM over the ablated models. From this, we see that the
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Table 5: Ablation test on the TNTM. The test perplexity and the network log likelihood
is evaluated on the TNTM against several ablated variants of the TNTM. The result shows
that each component in the TNTM is important.

TNTM Model Test Perplexity Network Log Likelihood

No author  669.12+9.3 N/A
No hashtag 1017.23 +27.5 —522.83 +17.7
No p1 node 607.70 £10.7 —508.59+9.8
No 6’- 6 connection  551.78 +16.0 —509.21 +18.7
No power-law  508.64 +7.1 —560.28 +30.7
Full model 505.01+7.8 —500.63 +£13.6

Table 6: Clustering evaluations of the TNTM against the LDA with different pooling
schemes. Note that higher purity and NMI indicate better performance. The results for
the different pooling methods are obtained from Table 4 in Mehrotra et al. (2013). The
TNTM achieves better performance on the purity and the NMI for all datasets except for
the Specific dataset, where it obtains the same purity score as the best pooling method.

Method/Model Purity NMI
Data  Generic  Specific FEvents Generic Specific  FEvents
No pooling 0.49 0.64 0.69 0.28 0.22 0.39
Author 0.54 0.62 0.60 0.24 0.17 0.41
Hourly 0.45 0.61 0.61 0.07 0.09 0.32
Burstwise 0.42 0.60 0.64 0.18 0.16 0.33
Hashtag 0.54 0.68 0.71 0.28 0.23 0.42

TNTM 0.66 0.68 0.79 0.43 0.31 0.52

greatest improvement on perplexity is from modelling the hashtags, which
suggests that the hashtag information is the most important for modelling
tweets. Second to the hashtags, the authorship information is very impor-
tant as well. Even though modelling the power-law behaviour is not that
important for perplexity, we see that the improvement on the network log
likelihood is best achieved by modelling the power-law. This is because the
flexibility enables us to learn the author—topic distributions better, and thus
allowing the TNTM to fit the network data better. This also suggests that
the authors in the corpus tend to focus on a specific topic rather than having
a wide interest.

5.60.4. Document Clustering and Topic Coherence

Mehrotra et al. (2013) shows that running LDA on pooled tweets rather
than unpooled tweets gives significant improvement on clustering. In par-
ticular, they find that grouping tweets based on the hashtags provides most
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improvement. Here, we show that instead of resorting to such an ad hoc
method, the TNTM can achieve a significantly better result on clustering.
The clustering evaluations are measured with purity and normalised mutual
information (NMI, see Manning et al., 2008) described in 4.5.3. Since ground
truth labels are unknown, we use the respective query terms as the ground
truth for evaluations. Note that tweets that satisfy multiple labels are re-
moved. Given the learned model, we assign a tweet to a cluster based on its
dominant topic.

We perform the evaluations on the Generic, Specific and Events datasets
for comparison purpose. We note the lack of network information in these
datasets, and thus we employ only the HPYP part of the TNTM. Addition-
ally, since the purity can trivially be improved by increasing the number
of clusters, we limit the maximum number of topics to twenty for a fair
comparison. We present the results in Table 6. We can see that the TNTM
outperforms the pooling method in all aspects except on the Specific dataset,
where it achieves the same purity as the best pooling scheme.

5.6.5. Automatic Topic Labelling

Traditionally, researchers assign a topic for each topic—word distribution
manually by inspection. More recently, there have been attempts to label
topics automatically in topic modelling. For instance, Lau et al. (2011) use
Wikipedia to extract labels for topics, and Mehdad et al. (2013) use the
entailment relations to select relevant phrases for topics. Here, we show that
we can use hashtags to obtain good topic labels. In Table 7, we display
the top words from the topic—word distribution 1, for each topic k. Instead
of manually assigning the topic labels, we display the top three hashtags
from the topic-hashtag distribution ;. As we can see from Table 7, the
hashtags appear suitable as topic labels. In fact, by empirically evaluating
the suitability of the hashtags in representing the topics, we consistently find
that, over 90% of the hashtags are good candidates for the topic labels.
Moreover, inspecting the topics show that the major hashtags coincide with
the query terms used in constructing the T'6 dataset, which is to be expected.
This verifies that the TNTM is working properly.

6. Conclusion

In this article, we proposed a topic modelling framework utilising PYPs,
for which their realisation is a probability distribution or another stochastic
process of the same type. In particular, for the purpose of performing infer-
ence, we described the CRP representation for the PYPs. This allows us to
propose a single framework, discussed in Section 3, to implement these topic
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Table 7: Topical analysis on the T6 dataset with the TNTM, which displays the top
three hashtags and the top n words on six topics. Instead of manually assigning a topic
label to the topics, we find that the top hashtags can serve as the topic labels.

Topic Top Hashtags Top Words

finance, money, bank, marketwatch,
stocks, china, group, shares, sale

Topic 1 finance, money, economy

Topic 2  politics, iranelection, tcot

music, folk, monster, head, pop,
free, indie, album, gratuit, dernier

Topic 3 music, folk, pop
sports, women, football, win, game,
top, world, asheville, vols, team

Topic 4  sports, women, asheville
tech, news, jquery, jobs, hiring,
gizmos, google, reuters

Topic 5 tech, news, jobs

Topi i biol . X
opic 6 science, ews, blology cancer, researchers, brain, biology, health

models, where we modularise the PYPs (and other variables) into blocks that
can be combined to form different models. Doing so enables significant time
to be saved on implementation of the topic models.

We presented a general HPYP topic model, that can be seen as a general-
isation to the HDP-LDA (Teh and Jordan, 2010). The HPYP topic model is
represented using a Chinese Restaurant Process (CRP) metaphor (Teh and
Jordan, 2010; Blei et al., 2010; Chen et al., 2011), and we discussed how the
posterior likelihood of the HPYP topic model can be modularised. We then
detailed the learning algorithm for the topic model in the modularised form.

We applied our HPYP topic model framework on Twitter data and pro-
posed the Twitter-Network Topic model (TNTM). The TNTM models the
authors, text, hashtags, and the authors-follower network in an integrated
manner. In addition to HPYP, the TNTM employs the Gaussian process
(GP) for the network modelling. The main suggested use of the TNTM is
for content discovery on social networks. Through experiments, we show that
jointly modelling of the text content and the network leads to better model
fitting as compared to modelling them separately. Results on the qualitative
analysis show that the learned topics and the authors’ topics are sound. Our
experiments suggest that incorporating more auxiliary information leads to
better fitting models.
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6.1. Future Research

For future work on TNTM, it would be interesting to apply TNTM to
other types of data, such as blogs and news feeds. We could also use TNTM
for other applications. such as hashtag recommendation and content sugges-
tion for new Twitter users. Moreover, we could extend TNTM to incorporate
more auxiliary information: for instance, we can model the location of tweets
and the embedded multimedia contents such as URL, images and videos.
Another interesting source of information would be the path of retweeted
content.

Another interesting area of research is the combination of different kinds
of topic models for a better analysis. This allows us to transfer learned knowl-
edge from one topic model to another. The work on combining LDA has al-
ready been looked at by Schnober and Gurevych (2015), however, combining
other kinds of topic models, such as nonparametric ones, is unexplored.
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