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Simulation of Stochastic Hawkes

— Exact simulation of Stochastic Hawkes extending Dassios and Zhao (2013).

— By discretizing the SDEs using unequal periods from the event times, the levels of
excitation Y are simulated as required by Stochastic Hawkes.

— The algorithms are as follow:

Contributions/Highlights

1. A fully Bayesian framework that utilises Stochastic Differential Equations
(SDEs) to model the excitatory relationships of a Hawkes process.

. The SDEs allow the levels of excitation (Y) to be correlated, a feature that
cannot be tackled by existing models using constant or i.i.d. levels of
excitation.

Algorithm 2 Simulation of Stochastic Y;

1. Given Y;  and {T; 1, T;}

Algorithm 1 Simulation of Stochastic Hawkes 2. It Y ~ Geometric Brownian Motion, then
(a) Sample Y; through

. A novel simulation algorithm for the Stochastic Hawkes, drawing the levels
of excitation as needed, following discretization with unequal periods.

. A hybrid MCMC algorithm of Metropolis-Hastings (MH) and Gibbs sampler,
made possible using the branching representation of Hawkes processes.

1. We firstly set Tp = 0, A\ = Ao — a, and given Yj.
2. Fort=1,2,... and while T;; < T w~ N(0,0*(T; —Tiy)),
0
(a) Draw S,,;( ) — —% log U (0, 1). Yi =Yg exp (u(Ti—Tia) +u)

(b) Draw u ~ U(0,1). Set SV = —1Llog (1 _
If Y ~ Exponential Langevin, then

. Synthetic experiments show that Stochastic Hawkes is more flexible and can 5/)\(121 log u) Note we set ") := 0o when the (a) Sample Y; using

model i.i.d. excitations, while the Hawkes process with i.i.d. excitations fail
to fit the stochastic excitations.

log term is undefined. 5

) SetT; = T, 1 + min (5,50), S,}”). w ~ N(o, g—k (1- e—%(Tﬁ—Ti—”)),
(d) Sample YVTIé (refer to Algorithm 2)

. Correlation in Japanese earthquakes’ magnitude (ETAS) are better modelled
(e) Update )\%) = )\5,21 e~ 0(Ti—Tia) 4 Yr..

by Stochastic Hawkes compared to classical Hawkes process.

Y; = exp (10g Yiqe M)y

(1 — e_k(Ti_T'i—l)) 4+ ’LL)

Why use SDEs to model the levels of excitations? , ,
— More flexible and can capture correlation in the level of excitations. There are two Representations of Point Processes

— Example: Japanese Earthquakes Data from ETAS (year 1951 — 1952, see Di o Intensity Representation

Giacomo et al, 2015) — A point process can be defined by its intensity function (see Stochastic Hawkes’).

Japanese Earthquakes Sample Autocorrelation Function

* Branching Representation
— Alternatively, can use the branching representation for point process, the benefit of
this is that the likelihood function of the event times can be simplified.
— All events are classified into 'immigrants’ or offsprings’:
— Immigrant means the event time is generated from the base intensity function.

Sample Autocorrelation

el é ! time - base Intensity |
| T NI ! ] — Offspring means the event time is generated from the intensity excitation of
| ; other event times.
. J . , . ? ? ? — These classifications are captured by indicators Z;; . (see details in the paper)
fime — Likelihood of event times T; (left: without branching; right: with branching):
Nr Nr .
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Stochastic Hawkes A * Hybrid of Metropolis-Hastings and Gibbs Sampling
— The employment of branching representation enables the use of Gibbs sampling to
¢ IntenS|ty FunCtiOn learn Z’ u, and o.
— Intensity function is of the following form: Zaz =1 Note the varaton of heights with Cov(¥s, ¥o) 70 — Other parameters a, 1y, and Y are learned with the vanilla MH algorithm.
M) = Xo(t) + Y Y(T)v(t—T))
v:it>T5

Experiments and Results
* Synthetic Validation

— Using the exact simulation algorithm, the event times and the levels of excitations are
generated assuming Y follows i.i.d. Gamma, GBM, or Exponential Langevin.

— There are three kinds of Y.
— Classical. Y = constant.
— Random excitations. Y =i.i.d. elements.
— Stochastic excitations. Y follows SDEs.

T T, Ty T Ts Ts T : : :
: S o — Performing experiments to recalibrate the parameters and subsequently sample the
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. posterior Y gives the following interesting results:
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— i.i.d. elements do not exhibit correlation (left, as expected), but Stochastic Y
induce correlation which are observed on real data (right). — Model (b) has the same model as (a), thus exhibiting same distribution (good result).

— Stochastic Hawkes (c and d) can also learn/imitate i.i.d. Y despite diff model. (good result)

e Stochastic Excitations

— We present two SDEs for modelling Y.
— Geometric Brownian Motion (GBM): I —— 2 b —————

. | .
Y — /,11 _l_ _0-2 1/;'; dt _I_ O-l/vt dBt 15f 1 15 | 15F 1 15} -
O 2 0 > > > =
where B; is a Brownian motion. 1 and o are parameters. ¥ | M [ o I -
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— Exponential Langevin:

0 0

* When ground truth Y follows Geometric Brownian Motion

) a) Ground truth GBM Y b) Learned by i.i.d. GammaY c) Learned by GBM Y d) Learned by i.i.d. Exp Langevin Y

— Hawkes with i.i.d. Y (b) fails to learn excitations that follow SDE which exhibit correlation

(a).

where B, is a Brownian motion. y and o are parameters. — While both Stochastic Hawkes (c and d) can learn back the Y.



