
Hawkes Processes with 

Stochastic Excitations

Contributions/Highlights
1. A fully Bayesian framework that utilises Stochastic Differential Equations 

(SDEs) to model the excitatory relationships of a Hawkes process.

2. The SDEs allow the levels of excitation (𝑌) to be correlated, a feature that 
cannot be tackled by existing models using constant or i.i.d. levels of 
excitation. 

3. A novel simulation algorithm for the Stochastic Hawkes, drawing the levels 
of excitation as needed, following discretization with unequal periods.

4. A hybrid MCMC algorithm of Metropolis-Hastings (MH) and Gibbs sampler, 
made possible using the branching representation of Hawkes processes.

5. Synthetic experiments show that Stochastic Hawkes is more flexible and can 
model i.i.d. excitations, while the Hawkes process with i.i.d. excitations fail 
to fit the stochastic excitations.

6. Correlation in Japanese earthquakes’ magnitude (ETAS) are better modelled 
by Stochastic Hawkes compared to classical Hawkes process.
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Why use SDEs to model the levels of excitations?
– More flexible and can capture correlation in the level of excitations.
– Example: Japanese Earthquakes Data from ETAS (year 1951 – 1952, see Di 

Giacomo et al, 2015)

– This shows there is correlation in the dataset.

Stochastic Hawkes
• Intensity Function
– Intensity function is of the following form:

– There are three kinds of 𝑌. 
– Classical. 𝑌 = constant.
– Random excitations. 𝑌 = i.i.d. elements.
– Stochastic excitations. 𝑌 follows SDEs.

– i.i.d. elements do not exhibit correlation (left, as expected), but Stochastic 𝑌
induce correlation which are observed on real data (right).

• Stochastic Excitations
– We present two SDEs for modelling 𝑌.
– Geometric Brownian Motion (GBM):

where 𝐵𝑡 is a Brownian motion. 𝜇 and 𝜎 are parameters.
– Exponential Langevin:

where 𝐵𝑡 is a Brownian motion. 𝜇 and 𝜎 are parameters.

Simulation of Stochastic Hawkes
– Exact simulation of Stochastic Hawkes extending Dassios and Zhao (2013).
– By discretizing the SDEs using unequal periods from the event times, the levels of 

excitation 𝑌 are simulated as required by Stochastic Hawkes.
– The algorithms are as follow:

Experiments and Results
• Synthetic Validation
– Using the exact simulation algorithm, the event times and the levels of excitations are 

generated assuming 𝑌 follows i.i.d. Gamma, GBM, or Exponential Langevin.
– Performing experiments to recalibrate the parameters and subsequently sample the 

posterior 𝑌 gives the following interesting results:

• When ground truth Y is i.i.d. Gamma

– Model (b) has the same model as (a), thus exhibiting same distribution (good result). 
– Stochastic Hawkes (c and d) can also learn/imitate i.i.d. 𝑌 despite diff model. (good result)

• When ground truth Y follows Geometric Brownian Motion

– Hawkes with i.i.d. 𝑌 (b) fails to learn excitations that follow SDE which exhibit correlation 
(a). 

– While both Stochastic Hawkes (c and d) can learn back the 𝑌.

a) Ground truth i.i.d. Gamma 𝑌 b) Learned by i.i.d. Gamma 𝑌 c) Learned by GBM 𝑌 d) Learned by i.i.d. Exp Langevin 𝑌

a) Ground truth GBM 𝑌 b) Learned by i.i.d. Gamma 𝑌 c) Learned by GBM 𝑌 d) Learned by i.i.d. Exp Langevin 𝑌

There are two Representations of Point Processes
• Intensity Representation
– A point process can be defined by its intensity function (see `Stochastic Hawkes’).

• Branching Representation
– Alternatively, can use the branching representation for point process, the benefit of 

this is that the likelihood function of the event times can be simplified.
– All events are classified into `immigrants’ or `offsprings’:

– Immigrant means the event time is generated from the base intensity function.
– Offspring means the event time is generated from the intensity excitation of 

other event times.
– These classifications are captured by indicators 𝑍𝑖𝑗 . (see details in the paper)

– Likelihood of event times 𝑇𝑖 (left: without branching; right: with branching):

• Hybrid of Metropolis-Hastings and Gibbs Sampling
– The employment of branching representation enables the use of Gibbs sampling to 

learn 𝑍, 𝜇, and 𝜎.
– Other parameters 𝑎, 𝜆0, and 𝑌 are learned with the vanilla MH algorithm.


