HAWKES PROCESSES WITH STOCHASTIC EXCITATIONS

Young Lee*, Kar Wai Lim[†], Cheng Soon Ong[†]

* National ICT of Australia & London School of Economics
 [†]National ICT of Australia & Australian National University

1 MOTIVATION FOR STOCHASTIC HAWKES

2 SIMULATION AND INFERENCE

Background

- Simple point processes:
 - (*T_i*)_{*i*} a sequence of non-negative random variables such that *T_i* < *T_{i+1}*. Also known as random times.
- Counting processes:
 - Given simple point process $(T_i)_i$

$$N(t) = \sum_{i>0} 1_{T_i \leq t}$$

is called the counting process associated with T.

• Interarrival times:

The process Δ defined by

$$\Delta_i = T_i - T_{i-1}$$

is called the interarrival times associated with T.

• Intensity process: The intensity process is defined as

$$\lambda(t) = \lim_{h \to 0} \frac{1}{h} E[N(t+h) - N(t)|\mathcal{F}_t]$$

Recap: Poisson \rightarrow Hawkes \rightarrow Stochastic Hawkes

- N_t as the number of arrivals or events of the process by time t.
- $\lambda = const.(Poisson)$, does not take the history of events into account. However, if an arrival causes the intensity function to increase then the process is said to be self-exciting (Hawkes Process).
- Hawkes flavour:

$$\lambda(t) = \hat{\lambda}_0(t) + \sum_{i:t>T_i} \frac{\mathbf{Y}(T_i)}{\nu(t-T_i)}, \qquad (1)$$

where the function ν takes the form $\nu(z) = e^{-\delta z}$.

- \exists different formulations for Y
 - Constant, Hawkes (1971), Hawkes & Oakes (1974)
 - Random excitations, Brémaud & Massoulié (2002), Dassios & Zhao (2013),
 - Stochastic differential equations.

Illustration of Stochastic Hawkes

Lee, Lim and Ong

Our model

• The intensity function

$$\lambda(t) = \underbrace{\hat{\lambda}_{0}(t)}_{\textit{Base intensity}} + \sum_{i:t>T_{i}} \underbrace{Y(T_{i})}_{\textit{Contagion process/Levels of excitation}} \nu(t - T_{i})$$

where $\hat{\lambda}_0 : \mathbb{R} \mapsto \mathbb{R}_+$ is a deterministic base intensity, Y is a stochastic process and $\nu : \mathbb{R}_+ \mapsto \mathbb{R}_+$ conveys the positive influence of the past events T_i on the current value of the intensity process.

- Base intensity $\hat{\lambda}_0$
- Contagion process / Levels of excitation (Y_i)_{i=1,2,..,N_T} measure the impact of clustering of the event times
- We take ν to be the exponential kernel of the form $\nu(t) = e^{-\delta t}$.

Stochastic differential equations to describe evolution of Y

• Changes in the levels of excitation Y is assumed to satisfy

$$Y_{\cdot} = \int_0^{\cdot} \hat{\mu}(t, Y_t) dt + \int_0^{\cdot} \hat{\sigma}(t, Y_t) dB_t$$

where B is a standard Brownian motion and $t \in [0, T]$ where $T < \infty$.

• Standing assumption:

$$Y_t > 0, \quad \forall t \ge 0.$$

- Geometric Brownian Motion (GBM):
- Exponential Langevin:

Two representations for Stochastic Hawkes

• Intensity based.

$$\lambda_t = a + (\lambda_0 - a)e^{-\delta t} + \sum_{i: T_i < t}^{N_t} Y_i e^{-\delta(t - T_i)}$$
⁽²⁾

- Cluster based. Immigrants and offsprings. We say an event time T_i is an
 - *immigrant* if it is generated from the base intensity $a + (\lambda_0 a)e^{-\delta t}$, otherwise
 - 2 we say T_i is an offspring.

It is natural to introduce a variable that describes the specific process to which each event time T_i corresponds to.

- $Z_{i0} = 1$ if event *i* is an immigrant,
- $Z_{ij} = 1$ if event *i* is an offspring of *j*

Quick recap - Stochastic Hawkes

Outline

D MOTIVATION FOR STOCHASTIC HAWKES

2 Simulation and Inference

3 Experimental Result

I Summary

Simulation & Inference

- Simulation framework of Dassios & Zhao (2011) is adopted,
- Decompose the inter-arrival event times into two independent simpler random variables: $S^{(1)}, S^{(2)}; S_{j+1}$ is the inter-arrival time for the (j + 1)-th jump:

$$S_{j+1} = T_{j+1} - T_j$$
.

Given the intensity function, we can derive the cumulative density function for S_{j+1} as

$$\mathcal{F}_{\mathcal{S}_{j+1}}(s) = 1 - \exp\left(-\left(\lambda_{\mathcal{T}_{j}^{+}} - a\right) rac{1 - e^{-\delta s}}{\delta} - as
ight)$$

Decompose S_{j+1} into $S_{j+1}^{(1)}$ and $S_{j+1}^{(2)}$:

$$\begin{split} \mathbb{P}(S_{j+1} > s) &= \exp\left(-\left(\lambda_{\mathcal{T}_{j}^{+}} - a\right)\frac{1 - e^{-\delta s}}{\delta}\right) \times e^{-as} \\ &= \mathbb{P}\left(S_{j+1}^{(1)} > s\right) \times \mathbb{P}\left(S_{j+1}^{(2)} > s\right) \\ &= \mathbb{P}\left(\min\left(S_{j+1}^{(1)}, S_{j+1}^{(2)}\right) > s\right). \end{split}$$

Simulation & Inference

$$\begin{split} F_{S_{j+1}^{(1)}}(s) &= \mathbb{P}\Big(S_{j+1}^{(1)} \le s\Big) = 1 - \exp\Big(-\left(\lambda_{T_j^+} - a\right)\frac{1 - e^{-\delta s}}{\delta}\Big),\\ F_{S_{j+1}^{(2)}}(s) &= \mathbb{P}\Big(S_{j+1}^{(2)} \le s\Big) = 1 - e^{-as}. \end{split}$$

for $0 \le s < \infty$. To simulate S_{j+1} , we simply need to independently simulate both $S_{j+1}^{(1)}$ and $S_{j+1}^{(2)}$. Simulating $S_{j+1}^{(2)}$ is trivial since $S_{j+1}^{(2)}$ follows an exponential distribution with rate parameter *a*. To simulate $S_{j+1}^{(1)}$, we use the inverse CDF approach:

$$S_{j+1}^* = -\frac{1}{\delta} \ln \left(1 + \frac{\delta \ln(v)}{\lambda_{\mathcal{T}_j^+} - \mathsf{a}} \right) \qquad \quad \mathsf{if} \; \exp \left(- \frac{\lambda_{\mathcal{T}_j^+} - \mathsf{a}}{\delta} \right) \leq v < 1,$$

we discard S_{j+1}^* otherwise, that is, $v < \exp\left(-\frac{\lambda_{\tau_j^+}-a}{\delta}\right)$ (this corresponds to the defective part), where v is simulated from a standard uniform distribution $V \sim U(0, 1)$.

Simulation & Inference

Inference - Hybrid of MH and Gibbs

- The employment of branching representation enables the use of Gibbs sampling to learn Z, μ and σ ,
- Other parameters a, λ_0, k and Y are learned with the vanilla MH algorithm.

Outline

1 Motivation for Stochastic Hawkes

2 Simulation and Inference

3 Experimental Result

4 SUMMARY

Synthetic validation

- Inference algorithm is first tested on synthetic data generated from Stochastic Hawkes
- Event times are generated assuming Y follows iid Gamma, GBM or Exponential Langevin,
- Performing experiments to recalibrate the parameters and subsequently sample the posterior Y gives the following interesting results

Inference learns Gamma ground truth

Exp Langevin

• All seems good.

Inference learns G.B.M.

• iid Gamma fails, but a posteriori trying to capture a downward trend.

• GBM learns well. Exp Langevin too!!

Lee, Lim and Ong

Stochastic Hawkes

Japanese Earthquakes Data (Di Giacomo et. al 2015)

• Plot of Y vs time:

- Y might not be iid as earthquake occurrence tend to be correlated.
- Geophysical TS are frequently autocorrelated because of inertia or carryover processes in physical system.
- Autocorrelations should be near-zero for randomness, else will be significantly non-zero

Autocorrelation functions - SDEs retrieve correlated Y

Prediction - Stochastic Hawkes performs reasonable well

TABLE: Prediction of number of Earthquakes on Test Set. Result is averaged over 5 runs.

Model	Predicted	Observed	DIFF
Poisson Process	62.80 ± 0.00	73.00	-10.20 ± 0.00
CLASSICAL HAWKES	61.13 ± 2.80	73.00	-11.87 ± 2.80
Stochastic Hawkes (GBM)	64.38 ± 6.82	73.00	-8.62 ± 6.82
Stochastic Hawkes (Langevin)	63.54 ± 4.09	73.00	-9.46 ± 4.09

Outline

1 Motivation for Stochastic Hawkes

2 Simulation and Inference

3 Experimental Result

Summary

Summary

• Motivation for Stochastic Hawkes

$$\lambda_t = a + (\lambda_0 - a)e^{-\delta t} + \sum_{i: T_i < t}^{N_t} Y_i e^{-\delta(t - T_i)}$$

Constant

- Independent and identically distributed
- Stochastic differential equations
- Simulation and Inference with Z
- Experiments Synthetic / Earthquake
- Poster #32, 3pm 7pm later today